
Journal of Computational Physics161,182–203 (2000)

doi:10.1006/jcph.2000.6497, available online at http://www.idealibrary.com on

A Higher-Order Compact Method in Space
and Time Based on Parallel Implementation

of the Thomas Algorithm

Alex Povitsky∗ and Philip J. Morris†
∗ICASE, M.S. 132C, NASA Langley Research Center, Hampton, Virginia 23681-0001;†Department

of Aerospace Engineering, The Pennsylvania State University, University Park, Pennsylvania
E-mail: aeralpo@icase.edu

Received August 9, 1999; revised March 10, 2000

In this study we propose a novel method to parallelize high-order compact numer-
ical algorithms for the solution of three-dimensional PDEs in a space–time domain.
For such a numerical integration most of the computer time is spent in computa-
tion of spatial derivatives at each stage of the Runge–Kutta temporal update. The
most efficient direct method to compute spatial derivatives on a serial computer is
a version of Gaussian elimination for narrow linear banded systems known as the
Thomas algorithm. In a straightforward pipelined implementation of the Thomas
algorithm processors are idle due to the forward and backward recurrences of the
Thomas algorithm. To utilize processors during this time, we propose to use them
for either nonlocal data-independent computations, solving lines in the next spa-
tial direction, or local data-dependent computations by the Runge–Kutta method.
To achieve this goal, control of processor communication and computations by a
static schedule is adopted. Thus, our parallel code is driven by a communication and
computation schedule instead of the usual “creative programming” approach. The
obtained parallelization speed-up of the novel algorithm is about twice as much as
that for the basic pipelined algorithm and close to that for the explicit DRP algo-
rithm. Use of the algorithm is demonstrated and comparisons with other schemes are
given. c© 2000 Academic Press

Key Words:parallel computing; processor scheduling; high-order numerical method;
compact scheme; pipelined Gauss elimination; banded linear systems.

1. INTRODUCTION

High-order accurate numerical schemes are needed to capture multiscale phenomena
and the long-time integration characteristics required for problems of computational wave
propagation and the direct numerical simulation of turbulence.

182

0021-9991/00 $35.00
Copyright c© 2000 by Academic Press
All rights of reproduction in any form reserved.

PARALLEL COMPACT ALGORITHM 183

Implicit finite difference formulas are defined as expressions where derivatives at
different mesh points appear simultaneously [1, 2]. The price that must be paid for high-
order accuracy with low dissipation and dispersion is that compact finite difference schemes
require the solution of a linear narrow-banded system of equations for the unknown deriva-
tive values. For instance, one can achieve 8th and 10th orders of accuracy solving tri-
diagonal and pentadiagonal systems [2], respectively. The use of implicit filters [3]
enables implementation of compact schemes for nonlinear models with nonuniform
grids.

While compact schemes of the sixth order are widely used ([4, 5], for example), explicit
DRP schemes [6] are used only up to the formal fourth order, to the best of the authors’
knowledge. Typically, the wide stencils of DRP schemes lead to more severe problems of
stability than compact schemes.

The number of arithmetic operations per grid node and accuracy properties are practically
equal for DRP and compact formulations of the fourth order [7]; therefore, we compare the
parallelization efficiency of compact schemes with that of DRP schemes using fourth-order
schemes as an example. Then, we show that the parallelization efficiency of our algorithm,
being applied to a higher (sixth) order compact scheme, is practically equal to that of the
fourth-order compact scheme.

Whereas efficient parallelization of explicit central-difference schemes has been imple-
mented by several authors [8, 9] the efficient implementation of compact schemes on parallel
computers remains an open problem.

In a multidimensional case the partial derivatives can be found by the solution of the
banded linear systems formed by considering each spatial partial derivative separately. The
most computationally efficient method for the solution of a linear banded system on a
single processor is a version of Gaussian Elimination known as the Thomas algorithm. For
a systems withN unknowns this method requiresO(N) operations.

Parallel solvers that adopt the Thomas algorithm for sets of independent banded systems
are of the pipelined type. Pipelines occur due to the recurrence of data within a loop. The main
disadvantage is that during the pipelined process processors will be idle at the beginning
of the computations and when the algorithm switches from the forward to the backward
computational step. Note that the idle stage exists even if communications are very fast,
because processors must wait for completion of computations on the previous processors. A
natural way to avoid far-field data-dependency is to introduce artificial boundary conditions
(ABC) at interdomain interfaces. Nordstrom and Carpenter [10] have shown that multiple
interface ABC lead to a decrease of the stability range and accuracy for high-order compact
schemes. Additionally, the theoretical stability analysis is restricted to linear PDEs and
unidirectional partitioning.

As an alternative to pipelining, several concurrent direct linear banded solvers have
been developed (see [11], [12], and bibliography in these references). These algorithms are
based on matrix-vector multiplications instead of the forward and backward recursive steps
of the Thomas algorithm. For matrices with narrow bands these factorizations have a higher
degree of parallelism than the basic pipelined Thomas algorithm. These techniques lead to
a substantial increase in the number of floating-point operations (a factor of 2–2.5), which
effectively reduces the gains obtained by parallelism [11].

Hofhaus and van de Velde [12] compared the pipelined Thomas algorithm with other
direct methods (recursive doubling, cyclic reduction, divide and conquer, and partition
method) and observed that it has the lowest floating-point operation count and requires the

184 POVITSKY AND MORRIS

least amount of communication. However, it is less concurrent than some other methods
due to the startup time required for all processors to participate in the computation (i.e., the
pipelined nature of this algorithm).

Sun [13] developed a Parallel Diagonal Dominant (PDD) algorithm which is specifically
designed for the solution of Toeplitz tridiagonal systems arising from compact schemes.
Taking into account the constant and diagonally dominant nature of the coefficients of
Toeplitz matrices, Sun dropped intermediate coefficients and investigated the accuracy of
this approximation, which is a necessary part of PDD. However, the PDD algorithm is an
approximation of the original high-order compact schemes and it has a higher computational
overhead compared to the Thomas algorithm.

Eidson and Erlebacher [14] developed a chained (pipelined) algorithm for the case of
periodic boundary conditions. For nonperiodic boundary conditions, they proposed a re-
ordering of the elements within the array in order to avoid idle time. However, in this case
the computational field would be partitioned in a noncontiguous way and, therefore, the
communication costs are large.

The goal in this paper is to develop a parallel compact algorithm which keeps the same
computational cost and produces exactly the same solution as its single-processor analog.
The algorithm should also be suitable for any local boundary conditions.

We recall that in the basic pipelined Thomas algorithm processors stay idle at some
stages of the solution of the linear banded systems in any spatial direction. Compact schemes
require the solution of data-independent linear systems in three spatial directions. Therefore,
processors can be used for computations of derivatives in the next spatial direction while
they cannot proceed with computations corresponding to solutions of linear systems in
the current direction. On the other hand, Runge–Kutta computations are local but data-
dependent; i.e., all spatial derivatives in a grid node must be computed before the temporal
update.

The key feature of the proposed algorithm is that processors are used for the next com-
putational tasks, whereas in the basic pipelined Thomas algorithm they stay idle waiting
for data from neighboring processors at the forward and the backward steps of the Thomas
algorithm. As a result, in the proposed algorithm processors run in a time-staggered way
performing their computational tasks contiguously. In turn, the optimal number of lines
to be solved per message becomes larger than that for the basic pipelined Thomas algo-
rithm. Reduction of the number of messages is especially important for processor networks
where the communication latency time is larger than that for MIMD parallel computers.
Reduction of idle time and communication latency time leads to a considerable increase in
speed-up.

To make this algorithm feasible, a static schedule is used to control processor activities.
To assign this schedule before the execution of numerical computations, Povitsky [15]
recently developed a recursive scheduling algorithm for a one-dimensional pipeline of
processors. Here we adopt this algorithm to obtain an idle-less 3-D high-order parallel
method.

The paper contains four sections. In Section 2, we describe compact numerical schemes
and the Thomas algorithm in a serial case. In Section 3, we describe our parallelization
method for compact solvers. In Section 4, we describe a test case and compare the par-
allelization efficiency for our algorithm, the basic pipelined Thomas Algorithm, and an
explicit scheme.

PARALLEL COMPACT ALGORITHM 185

2. COMPACT NUMERICAL SCHEME

Consider a multidimensional first-order partial differential equation (PDE)

dU

dt
=
∑

k

Sk
∂U

∂xk
, (1)

wheret is the time, in the 3-D casek= 1, 2, 3 denote spatial coordinatesx, y, andz. The
mixed derivatives are not taken into consideration, to allow a directionally split compact
numerical scheme to be used for the solution of above equation.

The first derivative terms, such as∂U/∂x1, are approximated using compact finite dif-
ference schemes [2]

βU ′i−2+αU ′i−1+U ′i +αU ′i+1+βU ′i+2 =
a

21x
(Ui+1−Ui−1)+ b

21x
(Ui+2−Ui−2), (2)

where1x is the grid spacing and primes denote derivatives with respect tox1. Expansion
to systems with second spatial derivatives (Navier–Stokes type) is straightforward as the
compact formulation for second derivatives and the method for their computation is similar
to those for the first derivatives. For nonperiodic boundaries, one-sided near-boundary
discretizations have the form

U ′1+ αbU ′2 =
1

1x

∑
i=1,...,Nb

abiUi , (3)

whereNb is the size of the near-boundary stencil andabi are discrete coefficients. With
this choice the boundary schemes can be used with a tridiagonal interior scheme without
increasing the bandwidth [2]. In this study the classical Pad´e scheme (α= 0.25,a= 1.5, and
β = b= 0) is taken as an example with a tridiagonal matrix for the right and left sides of (2).
The proposed method of parallelization can be easily expanded to any compact scheme
described by (2).

Equation (1) is discretized in time with an explicit Runge–Kutta (RK) scheme. The
solution is advanced from time leveln to time leveln+ 1 in several substages [5]

H M
i =

∑
k

Sk
∂U M

∂xk
+ aM H M−1

i ,

(4)
U M+1

i = U M
i + bM+11t H M

i ,

whereM = 1, . . . , Q are the number of substages;i = 1, . . . , L denotes the unknown vari-
ables; and the coefficientsaM andbM depend upon the order of the RK scheme.

To compute derivatives∂U M/∂xk, we must solve a set of independent linear banded
systems of equations where each system corresponds to one line of the numerical grid. For
example, a system corresponding to a line in thex direction has a scalar tridiagonal matrix
Nx × Nx

ak,l xk−1,l + bk,l xk,l + ck,l xk+1,l = fk,l , (5)

wherek= 1, . . . , Nx, l = 1, . . . , Ny × Nz,ak,l , bk,l , ck,l are the coefficients,xk,l are the
unknown variables, andNx, Ny, and Nz are the number of grid nodes in thex, y, andz
directions, respectively.

186 POVITSKY AND MORRIS

The first step of the Thomas algorithm isLU factorization

d1,l = b1,l , dk,l = bk,l − ak,l
ck−1,l

dk−1,l
, k = 2, . . . , Nx, (6)

and forward substitution (FS)

g1,l = f1,l

d1,l
, gk,l = −ak,l gk−1,l + fk,l

dk,l
, k = 2, . . . , Nx. (7)

The second step of the Thomas algorithm is backward substitution (BS)

xNx,l = gNx,l , xk,l = gk,l − xk+1,l
ck,l

dk,l
, k = Nx − 1, . . . ,1. (8)

The coefficientsak, bk, andck are constant for compact schemes; therefore, LU factoriza-
tion is performed only once and the first step computations include only forward substitution
(7).

The serial algorithm for the compact numerical solution of the system (1) is performed
as follows:

1. Compute the right-hand side of Eq. (2) using values of the governing variableU from
the previous time step.

2. Compute the spatial derivatives solving tridiagonal systems in all spatial directions.
3. Compute the right-hand side of Eq. (1) using the spatial derivatives computed on

Step 2 and update governing variables by the Runge–Kutta scheme.
4. Repeat computational steps 1–3 for allQ stages of the Runge–Kutta scheme.
5. Repeat computational steps 1–4 for all time steps.

3. PARALLELIZATION METHOD

3.1. Partitioning Scheme

The computational domain is split into subdomains and each subdomain is loaded on
a processor. Steps 1 and 2 require exchange of interfacial data between neighboring pro-
cessors. For a subdomain with a given volume (number of grid nodes per processor) and a
parallelepiped shape (interface planes parallel to coordinate planes), a cube has the mini-
mum surface-to-volume ratio that secures the most efficient parallelization [16, 17].

Overlap regions on each side of the subdomain store information that must be transferred
from neighboring domains; i.e., the forward-step coefficients, the backward-step solution,
and the values of the main variables to compute the right-hand sides of the compact for-
mulations (2). For the classical Pad´e scheme, one layer of nodes from each side should be
transferred to neighboring processors. Ifβ 6= 0 and/orb 6= 0, two layers of nodes are re-
quired to store the transfered data. Note, that overlap regions are used only for data storage
and not for redundant computations; i.e., the computations are exactly the same as in the
single processor case.

To parallelize a serial code using 3-D partitioning is a difficult task. However, an object-
oriented approach adapted in C++ makes it possible to use the same class for pipelined
computations in all spatial directions. Three-dimensional partitioning with cubic subdo-
mains is adopted in the present study.

PARALLEL COMPACT ALGORITHM 187

3.2. Parallelization of Direct Linear Solvers

Consider the parallelization of Step 2. Suppose, a linel in thex direction is split among
the processors (see Fig. 1). Computing its part of thel th line, thepth processor: receives
coefficientgN(p−1)/P,l from the(p− 1)th processor and puts it in an overlap node{0, l };
computes the forward step coefficientsgk,l , wherek= N(p− 1)/P+1, . . . , N p/P; sends
coefficientsgN p/P,l to the(p+ 1)th processor; and repeats computations (7) for the next
lines until all the forward step computations are completed. After completion of all forward
step computations specific to a single processor, thepth processor (except the last) has
to wait for the completion of the forward step computations by all processors ahead of it.
The last outermost (Pth) processor starts the backward step computations (8) first. Other
processors proceed with the backward step computations in a manner similar to the forward
step computations. An overlap layer of nodesN+ 1 is used for backward computations.

In the literature [14, 16, 18] the parallelization penalty for the solution of sets of linear
banded systems has been reduced by sending the necessary information to neighboring
processors for groups of computed lines at the forward and backward steps of the Thomas
algorithm. The optimal number of lines to be solved per message (the size of packet) has
been derived as a function of computation time per grid point and communication time (see
Eq. (11)).

Figure 2 presents the communication and computations within a pipeline in a single
spatial direction. The pipeline includes five processors. Lines are gathered in nine packets
in the forward direction and in six packets in the backward direction. Zeros denote the idle
time that occurs at the beginning of computations and when the algorithm switches from
the forward to the backward computational step.

We define the basic pipelined Thomas algorithm (PTA) to be the method described above
for the solution of sets of linear banded systems on multiple processors. If the computational
domain is partitioned in all spatial directions, computations in the next spatial direction are
pipelined as well. Therefore, a processor belongs to three pipelines. Global synchronization
of processors occurs at each spatial step and processors stay idle waiting for data from
immediate neighbors.

In the proposed algorithm we avoid this idle stage by performing computations in the
next spatial direction when there is no available data to perform the Thomas algorithm
computations in a current spatial direction. In other words, we fill idle time units of the
basic pipelined algorithm with useful computations.

The Runge–Kutta computations (Step 3) are local but data-dependent because these
computations use spatial derivatives in all directions as input data. Consequently, all spatial

FIG. 1. Data traffic in a single direction.

188 POVITSKY AND MORRIS

FIG. 2. Schedule of processors for the PTA in a single direction. Here each column corresponds to a processor,
“0”, “1”, and “−1” denote idle stage, forward, and backward computations; arrows - - - >, < - - -denote the send
and receive communications.

derivatives must be computed before RK computations can be performed for correspond-
ing grid nodes. Thus, we cannot perform Runge–Kutta computations (Step 3) while pro-
cessors are idle between the forward and the backward steps of the Thomas algorithm
(see above). By this time spatial derivatives in the last rendered direction are not yet
computed.

PARALLEL COMPACT ALGORITHM 189

FIG. 3. Schedule of processors for the IB-PTA. The legend is the same as in the previous figure, < - - >denotes
the send–receive communications.

The Immediate Backward Pipelined Thomas Algorithm (IB-PTA) has been developed
by Povitsky [15] and is implemented here for the computations of the spatial derivative in
the last direction. The processor schedule is shown in Fig. 3. The idea behind this algorithm
is that the backward step computations for each group of lines start immediately after
the completion of the forward step computations for these lines. Each processor switches

190 POVITSKY AND MORRIS

between the forward and backward steps of the Thomas algorithm for various groups of
lines. As for the basic PTA, a processor communicates with its neighbors to get the necessary
data for the beginning of either the forward or backward computations for the next group
of lines.

The IB-PTA itself is not an idle-less algorithm. It has been shown [15] that the idle time
is the same for the IB-PTA and the basic PTA when these algorithms are used in a single
direction (compare Figs. 2 and 3). The advantage of the IB-PTA over the basic PTA is that
processors become idle after completion of the subset of lines; i.e., zeros appear after “−1”s
in Fig. 3. In the proposed algorithm, the IB-PTA is used in such a way that the idle time units
are filled with the local Runge–Kutta computations. Obviously, one can use the IB-PTA in
the first two directions as well.

The two types of interplay between processor activities considered here require the use of
a processor schedule to control processor computations and communication. The remainder
of this section describes computation of the optimal number of lines solved per message
(Subsection 3.3), generation of the processor schedule (Subsection 3.4), and the computa-
tional schedule-driven algorithm (Subsection 3.5). In Subsection 3.6, we will discuss ways
to create the schedule for more general domains and systems of equations with mixed spatial
derivatives.

3.3. Optimal Size of Packet of Lines

In the previous subsection, the way to use potential idle stage of processors was shown.
Actually, the use of idle time in the proposed algorithm leads to such a trade-off (described
in this subsection) between the communication latency and the data dependency delay that
considerably increases the optimum number of lines solved per message and, therefore, the
proposed algorithm has smaller latency time and fewer messages than the basic algorithm.

The additional (penalty) time in a multiprocessor system originates from (1) communica-
tion time due to the transfer of the forward step coefficients and the backward step solution
of the Thomas Algorithm, and (2) the processor idle time due to the pipelined nature of the
Thomas algorithm.

The former reason for penalty time exists in the proposed algorithm and in the basic
algorithm and is computed as a sum of communication latency time and communication
transfer time

F1 =
i=3∑
i=1

dN2/K1,i e(b0+ L f b1K1,i)+ dN2/K2,i e(b0+ Lbb1K2,i), (9)

wherei = 1, 2, 3 are spatial coordinates,K1,i andK2,i are the size of packets for the for-
ward and backward steps in thei th spatial direction, respectively,dN2/K1,i e anddN2/K2,i e
are the number of messages,L f andLb is the number of words per numerical grid point
transfered on the forward and backward step (see Table II). Here the linear model of com-
munication time between processors is adapted, i.e., time= b0+b1K , whereK is the length
of the string in words.

The latter component of penalty time for the basic algorithm is given by

F2 =
i=3∑
i=1

(Nd,i − 1)N(K1,i g1+ K2,i g2), (10)

PARALLEL COMPACT ALGORITHM 191

whereNd,i is the number of processors per pipeline in thei th direction,g1 andg2 are the
computational times per grid node for the forward and backward steps. This component of
penalty may be avoided for the proposed algorithm (see the previous subsection).

In this subsection we consider the 3-D domain with aNtot × Ntot × Ntot numerical grid
and an equal number of subdomain partitions in each spatial direction.

For the basic PTA, the latency and the processor idle time tradeoff for sets of linear
banded systems leads to the expression [16, 18]

K1 =
√

Nγ

ρ(Nd − 1)
, K2 =

√
Nγ

Nd − 1
, (11)

whereγ = b0/g2 is the ratio of the communication latency and the backward step compu-
tational time per grid node andρ= g1/g2 is the ratio of the forward and the backward step
computational times.

For the IB-PTA, which is used in the last spatial direction, the time to perform forward
step computations per portion of lines is equal to that for backward step computations:

N K1g1 = N K2g2. (12)

The first outermost processor in thex direction computes the forward step of the Thomas
algorithm in they direction while this processor is waiting for the backward step solution
from the second processor. The time balance of this processor is given as

K1N(Nd − 1)g1+ K2N(Nd − 1)g2 = N2× Ng1. (13)

The left-hand side of the above equation represents the time between the beginning of the
backward-step computations and the completion of the forward-step computations of the
Thomas algorithm in thex direction. The right-hand side is the time for the forward step
computations in the next(y) spatial direction.

Combining Eqs. (13) and (12) we obtain

K1 = N2

2(Nd − 1)
, K2 = ρK1. (14)

The same time balance equation is obtained for the share of processor time between com-
putations in they direction and in thez direction.

In most cases, theK values computed above are bigger than those computed by Eq. (11)
and, therefore, communication latency time is smaller for the proposed algorithm than for
the basic one. Otherwise, theK values for proposed algorithm are chosen as maximum of
those defined by Eqs. (14) and (11). In this case, communication latency times are equal
for the basic and the proposed algorithm. Here the idle time for the proposed algorithm is
no longer equal to zero and is given by

F2 =
i=3∑
i=1

((Nd,i − 1)N(K1,i g1+ K2,i g2)− N3g1). (15)

Actually, this is the time before completion of all forward-step computations on the first
processor and beginning of the backward-step computations for the first packet of lines. Still,
this idle time is smaller than that for the basic algorithm (Eq. (10)) because of substraction
of the second term in the above equation.

192 POVITSKY AND MORRIS

The potential idle stage of the processors performing the IB-PTA in thez direction is
used for local Runge–Kutta computations. To have completed lines for RK computations,
the first portion of lines must be completed with backward-step computations no later than
the first outermost processor completes the forward-step computations. This leads to a time
balance constraint similar to that described by Eq. (13).

To sum up, the parallelization penalty time includes the processor idle time, communi-
cation latency time, and communication transfer time. The communication transfer time
is equal for the basic algorithm and for the proposed algorithm as the same amount of
informationN2(L f + Lb) is transfered. This time plays a minor role asb1¿ b1 for modern
multiprocessor systems (see Fig. 8c). Substituting the optimalK for the basic algorithm
(Eq. (11)) to the formulas for idle time (9) and for communication time (10), these compo-
nents of parallelization penalty appear to be equal.

If Eq. (14) is valid, the proposed algorithm avoids the idle time and decreases the commu-
nication latency time, therefore, it suppresses parallelization penalty more than two times.
Otherwise, the communication latency times are equal for both algorithms and idle time
is still better for proposed algorithm (see Eq. 15). This happens for bigNd and smallN;
however, our computational experiments show that the former situation occurs in most cases
and parallelization penalty reduces two times or more (see Section 4).

3.4. Scheduling Algorithm

A unit that the proposed schedule addresses is defined as the time for the treatment of a
packet of lines by either forward- or backward-step computations in any spatial direction
(see the previous subsection).

At each time unit each processor either performs forward- or backward-step computations
or local Runge–Kutta computations for one packet of lines. To set up this schedule, let us
define the “partial schedules” corresponding to sweeps in a spatial direction as

J(p, i, dir) =


+1 forward step computations

0 processor is idle

−1 backward step computations,

(16)

wheredir= 1, 2, 3 denotes a spatial direction,p is the number of processors in a processor
row in thedir direction, andi is the number of the unit.

A recursive algorithm to compute the schedule in a single spatial direction was proposed
by Povitsky [15]

J(p, lmin, dir) = 1 if J(p+ 1, l , dir) = 1

J(p, l + 2, dir) = −1 if J(p+ 1, l , dir) = −1

J(p, l , dir) = 0 otherwise,

(17)

wherelmin=min(1≤ j ≤ l | J(p, j, dir)= 0). The corresponding valid schedule must be
assigned to the last outermost processor prior to the above recursive computations (see [15]
for more details). Thus, different pipelined algorithms (for example, the IB-PTA and the
basic PTA) are fully defined by their schedule on the last outermost processor.

In the framework of Cartesian partitioning, a processor(I , J, K) receives the forward-step
coefficients from its left neighbors (I− 1, J, K), (I, J− 1, K), and (I, J, K− 1)

PARALLEL COMPACT ALGORITHM 193

and sends the forward-step coefficients to its right neighbors (I+ 1, J, K), (I, J+ 1, K),
and (I, J, K+ 1). Performing the backward-step computations, the processor sends results
of computations to the left neighbors and receives data from the right neighbors.

For the basic PTA, a processor computes “direction-by-direction,” and its activities are
controlled by the communications, i.e., a processor waits for available data. For the IB-PTA
a processor receives data from a neighbor only when it is necessary to complete the com-
putations. Therefore, the communication schedule is assigned by means of a computations
schedule as follows. At the beginning of each time unit a processor communicates with
some of its right neighbors according to the value of the scheduling variableC:

C(p, i, right[dir]) =


0 processorsp and p+ 1 do not communicate,

1 send to processorp+ 1,

2 receive from processorp+ 1,

3 simultaneous send and receive.

(18)

The end of thei th time unit on thepth processor corresponds to the beginning of thei th
time unit on the(p+ 1)th processor in the same spatial direction. Therefore, the commu-
nication schedules in any spatial direction are computed as described in [15]:

C(p, i + 1, right[dir]) =


1 if J(p+ 1, i − 1, dir) 6= −1 & J(p+ 1, i, dir) = 1,

2 if J(p+ 1, i − 1, dir) = −1 & J(p+ 1, i, dir) 6= 1,

3 if J(p+ 1, i − 1, dir) = −1 & J(p+ 1, i, dir) = 1,

0 otherwise.
(19)

The definition ofC(p, i , left[dir]) and its computation are similar to that forC(p, i ,
right[dir]).

The final computational schedule is defined by

T(p, i) =


dir FS computations in the directiondir,

−dir BS computations in the directiondir,

4 local RK computations.

(20)

Partial directional schedules must be combined to form a final schedule. For example, the
processors should be scheduled to execute the forward-step computations in they direction
while their partial schedules include an idle stage between the forward- and the backward-
step computations in thex direction.

The final schedule is set by merging schedules in all three spatial directions, as follows:

1. Skip the idle time units
while(J(p, i, dir)= 0) {lb= lb+ 1; i = i + 1}

2. Assign the partial schedule to the earliest available time unit
T(p, lmin)= J(p, i, dir)× dir; lb= lmin

wherelmin=min(lb< j | T(p, j)= 0).
3. Assign communication scheduleC(p, i, left[dir]) andC(p, i, right[dir]) to the time

unit lmin.
4. Repeat steps 1–3 until all elapsed time units in the current direction are completed.

194 POVITSKY AND MORRIS

The first step ensures that the time interval between any computational activities does
not become smaller than that for a partial schedule. Otherwise, one might schedule the
backward-step computations immediately after completion of the forward-step computa-
tions (see Fig. 1) and get an incorrect schedule.

The obtained schedule meets the following requirements of consistency: (i) each proces-
sor performs one task per time unit; (ii) the forward step computations on thepth processor
begin no earlier than the conclusion of these computations for a current group of lines in
the same direction on the(p− 1)th processor (the left neighbor); (iii) the backward-step
computations on thepth processor begin no earlier than conclusion of these computations
on the(p+ 1)th processor (the right neighbor); and (iv) the backward-step computations
begin after completion of the forward-step computations in the same direction for the current
group of lines.

An example of a communication and computations schedule for the first outermost pro-
cessor (1, 1, 1) is shown in Table I. Obviously, this processor communicates only with its
right neighbors, (2, 1, 1), (1, 2, 1), and (1, 1, 2). Here the IB-PTA is used in all three spatial
directions.

TABLE I

Schedule of Communication and Computations for the First Outermost Processor (1, 1, 1),

Where i is the Number of Time Unit, T Denotes Type of Computations, (2, 1, 1), (1, 2, 1), and

(1, 1, 2) Denote Communication with Corresponding Neighbors

i T (2, 1, 1) (1, 2, 1) (1, 1, 2) i T (2, 1, 1) (1, 2, 1) (1, 1, 2)

1 1 0 0 0 28 −2 0 2 0
2 1 1 0 0 29 3 0 0 1
3 1 1 0 0 30 −2 0 2 0
4 1 1 0 0 31 3 0 0 1
5 1 1 0 0 32 −2 0 2 0
6 1 1 0 0 33 3 0 0 1
7 1 0 0 0 34 −2 0 2 0
8 −1 3 0 0 35 3 0 0 0
9 2 0 0 0 36 −3 0 0 3

10 −1 3 0 0 37 4 0 0 0
11 2 0 1 0 38 −3 0 0 3
12 −1 2 0 0 39 4 0 0 0
13 2 0 1 0 40 −3 0 0 2
14 −1 2 0 0 41 4 0 0 0
15 2 0 1 0 42 −3 0 0 2
16 −1 2 0 0 43 4 0 0 0
17 2 0 1 0 44 −3 0 0 2
18 −1 2 0 0 45 4 0 0 0
19 2 0 1 0 46 −3 0 0 2
20 −1 2 0 0 47 4 0 0 0
21 2 0 0 0 48 −3 0 0 2
22 −2 0 3 0 49 4 0 0 0
23 3 0 0 0 50 4 0 0 0
24 −2 0 3 0 51 4 0 0 0
25 3 0 0 1 52 4 0 0 0
26 −2 0 2 0 53 4 0 0 0
27 3 0 0 1

PARALLEL COMPACT ALGORITHM 195

TABLE II

Algorithm B: Forward-Step Computations for Interfacial Nodes

Order Current processor Next processor L f Lb

4th gun
N,l =

−aN gN−1,l− a
21x UN−1,l

dN
(g0,l =) gN,l = gun

N,l + a
21x

UN+1,l
dN

2 2

6th gun
N−1,l =

−aN−1gN−2.l+ a
21x (UN,l−UN−2,l)− b

41x UN−3,l
dN−1

(g−,l =) gN−1,l = gun
N−1,l + b

41x

UN+1,l
dN−1

4 3

gun
N,l =

−aN gun
N−1,l

− a
21x UN−1− b

41x UN−2

dN
(g0,l =) gN,l = −aN gN−1.l

dN
+ b

41x

UN+2
dN
+ a

21x

UN+1
dN

Computations of the right-hand sides of Eq. (2) requires the exchange of interfacial values
of the governing variables. A straightforward way to parallelize the algorithm (Algorithm
A) includes exchange of the near-boundary values before each time step. Each processor
exchanges data with its neighbors (I−1, J, K), (I, J−1, K), (I, J, K−1) in all three spa-
tial directions, then waits for the completion of computational tasks by its other neighbors
(I+ 1, J, K), (I, J+ 1, K), (I, J, K+ 1) and finally exchanges data with these three proces-
sors. The “asynchronous send–synchronous receive” mode of communication is suitable
for exchange of interfacial data. The interfacial values are stored in overlap node layers
“0” and “N+ 1.” This communication leads to local synchronization between processors.
Additionally, exchange of boundary values with three processors simultaneously may lead
to deterioration of parallelization efficiency. To avoid this synchronization, we propose to
transfer these values together with forward-step coefficients in the corresponding directions
by means of the following Algorithm B:

1. Compute the uncompleted forward-step coefficientsgun
N,l (g

un
N,l andgun

N−1,l for the 6th
order scheme) for interfacial nodes (see Table II).

2. Transfer valuesgun
N,l andUN (gun

N,l , g
un
N−1,l ,UN andUN−1 for the 6th order scheme) to

the next processor and put them in the overlap layer 0 (layers 0 and - for the 6th order
scheme).

3. Complete computation ofgN,l (gN−1,l andgN,l for the 6th order scheme) on the next
processor.

4. UsingUN−1,l (UN−1,l andUN−2,l for the 6th order scheme), compute right-hand side
of Eq. (2) for the first node (first two nodes for the 6th order scheme) on the next pro-
cessor.

5. Performing the backward-step computations, transfer valuesgN,l (gN,l andgN−1,l for
the 6th order scheme) and solutionx1,l back to the current processor.

Algorithm B avoids local synchronization between the neighboring processors and re-
duces the traffic of messages between the processors. This leads to approximately a 25%
reduction of the parallelization penalty in comparison with Algorithm A.

3.5. Computational Algorithm

The generation of the processor schedule includes (i) computation of the size of packet
by Eq. (14), (ii) computation of the processor schedule for the last processor in a current
direction [15], (iii) recurrent computation of the schedule for all processors in the pipeline
by Eq. (17), (iv) computation of the scheduling variables by Eqs. (18)–(20), and (v) binding
of schedules in spatial directions as described in the previous subsection.

196 POVITSKY AND MORRIS

FIG. 4. Schedule-governed banded linear solver, whereright= p+ 1 andleft= p− 1 denote left and right
neighbors,dir= 1, 2, 3 corresponds tox, y, andz spatial directions,T governs computations,Com controls
communication with neighboring processors,p is the processor number, andi is the number of group of lines
(number of time unit).

After assignment of the processor schedule on all processors, the computational part of
the method runs on all processors by an algorithm presented in Fig. 4. The static processor
schedule governs the consequence of computations and communications on each processor.
At the beginning of each unit a processor communicates with its neighbors by the schedule
(variableCom) and then performs scheduled computations (variableT.) The proposed code
style fully separates computational routines from communication procedures that allows
for easy reuse of the code.

3.6. Some Extensions

Let us consider a global domainNtot,x × Ntot,y× Ntot,z, whereNtot,x 6= Ntot,y 6= Ntot,z. In
this case the number of partitions is different for different directions, i.e.,Nd,x 6= Nd,y 6=
Nd,z, and the analog of Eq. (14) in thex direction is given by

K1,x = N2

2(Nd,x − 1)
. (21)

AssumingNd,x > Nd,y> Nd,z, we roundK1,y andK1,x to smaller integers in such a way that
mK1,x = K1,y andnK1,y= K1,z So doing, Eq. (13) holds for any direction and processors
run idle-less. The processor schedule addresses a packet of sizeK1,x as a unit. Computing
the Thomas algorithm in thex direction, processors use potential idle time for computations
in the y direction as in the previous case. Here a processor treatsm packets of lines in the
y direction before communication with the neighboring processor. Doing computations in
thez direction, a processor treatsmnpackets per communication. Results of parallelization
efficiency for the case are presented in Section 4.

PARALLEL COMPACT ALGORITHM 197

To reduce further the number of processors in a pipeline, we propose to combine our
scheduling algorithm with a two-way decomposition, denoted as the TW algorithm in this
study. Direct solvers for banded linear systems based on two-sided Gauss Elimination
were introduced by Babuska [19] and are referred to as twisted factorization, two-way
decomposition (TW), and “burn from two sides” by various authors. The computational
count per grid node for the TW algorithm is the same as for the serial Thomas algorithm.
An additional 2× 2 system of linear equations should be solved per line. The number of
processors in the pipeline is half the number compared to the basic Thomas algorithm;
therefore, the parallelization penalty is reduced. For long chains of processors, we propose
to combine our scheduling algorithm with the two-way pipelined algorithm. The price for
this improvement is programming of the Thomas algorithm in an inverse direction.

In this case, the schedule is generated for the rows of the firstP/2 and the lastP/2
processors. Then we include exchange of the forward-step coefficients between the(P/2)th
and(P/2+ 1)th processors and the solution of a 2× 2 system. These tasks are performed
immediately after completion of the forward-step computations for each group of lines on
middle processors.

For every stretched domains the size of a cubic subdomain becomes bigger than the
domain size in some directions. In this case, 1-D partitioning by stretched (noncubic)
subdomain is proposed. Since the linear systems need to be solved in each direction, no
matter how the grid is partitioned over the processors, there will be at least one direction
in which the recurrence spans across several processors. This direction is taken last, the
proposed scheduling algorithm is used to combine the IB-PTA in this direction with the
RK computations. The Thomas algorithm computations in the other directions are trivial
to solve, since processors contain the full systems.

For practically important multizone situations, the governing partial differential equations
are discretized on sets of numerical grids connecting at interfacial boundaries by ABC. In
this case, the number of processors in each zone is arbitrary and can be determined to
be proportional to the size of zone. Here we cannot always partition a zone with cubic
subdomains. For example, a cubic zone is perfectly (i.e., in a load-balanced way) covered
by cubic subdomains only in a case that the number of processors allocated to this zone
is cube of an integer number. Otherwise, a domain partitioning degrades to two- or one-
dimensional partitioning with poor surface-to-volume ratio. Our approach allows for the
combination of schedules corresponding to different pipelines and, therefore, a processor
can handle subsets of different grids (or nonaligned pieces of the same grid) to ensure load
balance and idle-less performance.

For problems with mixed and one-directional second derivatives, Eq. (1) appears as

dU

dt
=
∑

k

Sk
∂U

∂xk
+
∑

k

∑
j

Sk, j
∂2U

∂xk∂xj
. (22)

If Sk, j = 0 whenk 6= j , the parallelization strategy is the same as for Eq. (1) as second
derivatives are computed solving sets of linear banded systems (2) simultaneously with
those systems for first derivatives.

If all Sk, j are assumed different from zero, the proposed parallelization algorithm is
used in all three spatial directions to compute first derivatives. Then, the same algorithm
is applied to compute derivatives of derivatives(∂2U)/(∂xk∂xj), where the computed first
derivatives are used in the right-hand sides of systems (2). The IB-PTA in thez direction

198 POVITSKY AND MORRIS

must be used to obtain(∂U)/(∂z) before computing the(∂2U)/(∂x∂z) while processors
are idle. Additionally, lines in thez direction must be treated in such a way that grid points
with computed first derivative byz form continuous lines in thex direction. This problem
was solved by Povitsky [20] for parallel alternative direction implicit (ADI) algorithms.

4. PARALLEL COMPUTATIONS

4.1. Benchmark Problem

As an example of a three-dimensional model problem we consider the development of an
acoustic pulse in an unbounded domain. This problem was also considered as a benchmark
case by Morriset al. [21]. The problem satisfies the linearized Euler equations with no
basic flow and constant thermodynamic basic properties. If the linearized Euler equations
are nondimensionalized with respect to the basic density, the speed of sound and the grid
spacing as a length scale they may be written as,

∂u

∂t
= −∂p

∂x
,

∂v

∂t
= −∂p

∂y
,

(23)
∂w

∂t
= −∂p

∂z
,

∂p

∂t
= −∂u

∂x
− ∂v
∂y
− ∂w
∂z
.

The initial conditions are given by

p = ε exp

[
−x2+ y2+ z2

a

]
, (24)

whereε= 0.01 anda= ln(2)/9.
The analytical solution for an infinite domain is given by

panal= ε

2r
{(r − t) exp[−a(r − t)2] + (r + t) exp[−a(r + t)2]}. (25)

Characteristic boundary conditions are applied at∂Ä. The computational domain is
Ä= [−30< x< 30]× [−30< y< 30]× [−30< z< 30].

For comparison, the same problem has been solved using an explicit dispersion-relation-
preserving (DRP) spatial discretizations with a seven point stencil [6]. According to
Colonius [7] this scheme has approximately the same dispersion behavior and compu-
tational count as the considered 4th order compact scheme. A constant coefficient 6th order
artificial dissipation is added to the DRP scheme [21]. The volumetric average of the ab-
solute error

∑
i, j,k |pcomp− panal|/Ä is shown in Fig. 5. As would be expected from their

dispersion properties, the error in these two cases is almost equal whent < 25. Then, for
t ≥ 25 the accuracy is determined by the implementation of the boundary conditions and not
by the interior scheme properties. The error in the explicit scheme is dependent on the arti-
ficial dissipation coefficient. Two values have been considered:µ= 0.004 andµ= 0.002.
As expected, the absolute error is reduced as the value ofµ is decreased.

PARALLEL COMPACT ALGORITHM 199

FIG. 5. Temporal behavior of absolute error for explicit DRP and compact schemes.

4.2. Speed-Up

The CRAY T3E MIMD computer used in this study is installed in the San Diego Super-
computer Center (SDSC) at the University of California, San Diego.

The scheduling part of the parallel code includes the computation of the optimal number
of lines solved per message (i.e., number of portions of lines) and the assignment of a
communication and computation schedule (see the previous section). The solver part, which
is controlled by the static schedule, includes the Thomas algorithm computations in the
spatial directions (step 1 of the serial algorithm), local Runge–Kutta computations (steps
2 and 3), and loops by the stages of the RK computations and by time. Exactly the same
compact numerical schemes are used for the basic PTA and the proposed algorithm. The
speed-up on an MIMD computer withP processors over a single processor solving the
same problem is defined by

S= Tserial

Tparallel
, (26)

whereTparallel is the actual elapsed time per processor on a MIMD computer andTserial is
the actual elapsed time on a single processor. The parallelization penalty is defined as

TP = TparallelP − Tserial

Tserial
× 100%=

(
P

S
− 1

)
× 100%. (27)

Obviously, in the ideal caseS= P andTP = 0. For example, 100% parallelization penalty
corresponds to the case where a code runs onP processors and its speed-upS is equal to
P/2. We recall that the parallelization penalty exceeds 100% for concurrent parallel solvers
for banded matrices (see the Introduction).

Parallel speed-ups for explicit and compact computations with the basic PTA algorithm
and the proposed algorithm are shown in Fig. 6. Speed-up is shown as a function of the
number of nodes per processor per direction(N).

The level of parallelization penalty is 25–30% when the subdomain size varies from
203 to 103. The parallelization penalty for explicit schemes is invariant to the number of
processors involved in the computations because the only source of parallelization penalty

200 POVITSKY AND MORRIS

FIG. 6. Speed-up (S) and parallelization penaltyTP for explicit and compact schemes, (1) explicit scheme,
(2) proposed algorithm, and (3) basic PTA.

is local communication due to exchange of interfacial values of the governing variables.
Speed-ups for the compact scheme combined with our scheduling algorithm are similar to
those obtained for explicit computations whereas speed-ups for the basic PTA algorithm
are substantially lower.

Parallelization efficiency for the 6th order compact scheme appears to be very close to
that for the 4th order compact scheme. The only difference between the two schemes is the
amount of transfered information per numerical grid node (see Table II). This communica-
tion penalty time is small in comparison with other components of parallelization penalty,
i.e., communication latency time and processor idle time (see below).

Sample computer runs on 4× 4× 4= 64 and 5× 5× 5= 125 processors with 103–203

grid nodes per processor show that the parallel speed-up increases 1.5–2 times over the
basic parallel compact algorithm (see Figs. 7a and 7b).

FIG. 7. Speed-up and parallelization penalty (TP) for 3-D partitionings of computational domain,N is the num-
ber of numerical grid points per processor per direction, (a) 4× 4× 4= 64, (b) 5× 5× 5= 125, (c) 8× 4× 2= 64,
(d) 16× 2× 2= 64; (1) basic PTA and (2) proposed algorithm.

PARALLEL COMPACT ALGORITHM 201

FIG. 8. Theoretical estimation of parallelization efficiency: (a) the optimal number of lines solved per message
(for longest pipeline of three), (b) communication part of parallelization penaltyTcomm, (c) Speed-up, and (d) overall
parallelization penaltyTp. HereK1 is the number of lines solved per message for forward-step computations,N is
the number of numerical grid points per processor per direction, pairs of curves (1,4), (2,5), and (3,6) correspond
to 3-D partitioning of cubic domains on 43, 83, and 163 processors, curves (1,2,3) correspond to the proposed
algorithm (Eq. (21)), and curves (4,5,6) correspond to the basic algorithm (Eq. (11)).

For 8× 4× 2 and 16× 2× 2 partitionings on 64 processors the speed-up somewhat
decreases for both algorithms (see Figs. 7c and 7d). Still, the proposed algorithm outperforms
the basic algorithm in terms of speed-up. The novel algorithm and the basic algorithm are
used with corresponding optimal numbers of lines solved per message (Eqs. (14), (21), and
(11)).

To analyze the obtained speed-ups, some results of theoretical model of parallelization
(Subsection 3.3) for 43, 83, and 163 partitioning are presented in Fig. 8. Theoretical and
experimental speed-ups for 43 partitioning have reasonable correspondence. Experimental
speed-ups are lower than theoretical speed-ups due to the assumption of a linear communi-
cation time model.

The size of the packet is substantially larger for the proposed algorithm than that for the
basic algorithm for 43 and 83 partitionings (Fig. 8a). For the 163 partitioning, the optimal
size of packet become equal for both algorithms whenN< 14. Even in this case, the
obtained speed-up for the basic algorithm outperforms that for the basic one (compare
curves 3 and 6 in Figs. 8c and 8d). However, the difference in speed-ups decreases when
N approaches 10. Note, that the latter case corresponds to 163= 4096 processors and a

202 POVITSKY AND MORRIS

small number of numerical grid nodes per processor (103= 1000). For two-sided Gauss
Elimination (see Subsection 3.6) this critical number of processors doubles and the overall
number of processors becomes equal to 32768 that is considerably larger than a number
of processors in any real multiprocessor system. For a nonequal number of processors
in different directions, substantial parallelization penalty in the direction with the longest
number of processors in a pipeline softens by smaller parallelization penalties in other
directions (see Fig. 7d).

In Fig. 8b the communication penalty timeTcomm= N2(L f + Lb)/Tserial is presented.
As explained in Subsection 3.3, the parallelization penalty for 4th and 6th order compact
schemes differs only by means ofTcomm. This term contributes less than 10% penalty for
the 6th order scheme and no more than 5% for the 4th order scheme.

5. CONCLUSION

The pipelined Thomas algorithm has been applied to a multidimensional aeroacoustics
problem solved by a compact (implicit in space and explicit in time) numerical scheme.
To achieve good parallelization efficiency: the computational domain is split into cubic
subdomains; the number of lines solved per message is optimal; the values of the governing
variables are transfered together with the forward-step coefficients; and the schedule-driven
computations are performed in such a way that an idle stage for the processors is avoided.
Under this schedule, the processors perform computations in the next spatial direction
while otherwise they are idle from recursive computations in the current direction. To get
completed data for the Runge–Kutta temporal update, the Immediate Backward Pipelined
Thomas Algorithm is used in the last spatial direction. Processors perform their tasks in
a contiguous way. The optimal number of lines solved per message is larger than that
for the basic Thomas algorithm. The absence of idle time and the reduced latency of the
communications lead to a substantial reduction of the parallelization penalty.

Using modern MIMD computers with low communication latency (below 100µs) the
parallelization penalty of the proposed PTA is below 100% if the number of grid nodes per
processor is more than 103. This is a significant improvement over alternative algorithms
for implicit schemes. Thus, one can use the Thomas algorithm “as it is” rather than program
concurrent parallel solvers. On the other hand, the obtained parallelization efficiency is
comparable to that for the explicit dispersion-relation-preserving scheme with the same
order of accuracy.

ACKNOWLEDGMENTS

The first author gratefully acknowledges Dr. Mark Carpenter (NASA Langley Research Center) for discussion
about compact schemes. The authors also thank Mr. Chingwei M. Shieh (the Pennsylvania State University) for
performing the computations using the DRP scheme.

REFERENCES

1. Ch. Hirsch,Numerical Computation of Internal and External Flows, Vol. 1: Fundamentals of Numerical
Discretizations(Wiley, Chichester, 1994).

2. S. K. Lele, Compact finite difference schemes with spectral like resolution,J. Comput. Phys.103, 16 (1992).

PARALLEL COMPACT ALGORITHM 203

3. D. V. Gaitonde and M. R. Visbal, Further development of a Navier–Stokes solution procedure based on higher-
order formulas, in37th Aerospace Sciences Meeting & Exhibit, Reno, NV, 1999. [AIAA Paper 99-0557]

4. O. Inoue and Y. Hattori, Sound generation by shock-vortex interactions,J. Fluid Mech.380, 81 (1999).

5. R. V. Wilson, A. O. Demuren, and M. Carpenter,High-Order Compact Schemes for Numerical Simulation of
Incompressible Flows(ICASE Report No. 98-13, 1998).

6. C. K. W. Tam and J. C. Webb, Dispersion-relation-preserving finite difference schemes for computational
acoustics,J. Comput. Phys.107, 262 (1993).

7. T. Colonius,Lectures on Computational Aeroacoustics(technical report, von Karman Institute of Fluid Dy-
namics, Belgium, 1997). [http://green.caltech.edu/colonius]

8. J. S. Shang, J. A. Camberos, and M. D. White, Advances in time-domain computational electromagnetics, in
30th AIAA Plasmadynamics and Lasers Conference, Norfolk, VA, 1999. [AIAA Paper 99-3731]

9. D. P. Lockard and P. J. Morris, A parallel implementation of a computational aeroacoustic algorithm of airfoil
noise,J. Comput. Acoustics5, 337 (1997).

10. J. Nordstrom and M. Carpenter, Boundary and interface conditions for high order finite difference methods
applied to the Euler and Navier–Stokes equations,J. Comput. Phys.148, 621 (1999).

11. D. C. Sorensen J. J. Dongarra, I. S. Duff, and H. A. van der Vorst,Numerical Linear Algebra for High-
Performance Computers(SIAM, New York, 1998).

12. J. Hofhaus and E. F. Van De Velde, Alternating-direction line-relaxation methods on multicomputers,SIAM
J. Sci. Comput.17, 454 (1996).

13. X.-H. Sun,Applications and Accuracy of the Parallel Diagonal Dominant Algorithm(ICASE Report No. 93-6,
1993).

14. T. M. Eidson and G. Erlebacher,Implementation of a Fully-Balanced Periodic Tridiagonal Solver on a
Parallel Distributed Memory Architecture(ICASE Report No. 94-37, 1994).

15. A. Povitsky, Parallelization of pipelined algorithms for sets of linear banded systems,J. Parallel Distrib.
Comput.59, 68 (1999).

16. N. H. Naik, V. K. Naik, and M. Nicoules, Parallelization of a class of implicit finite difference schemes in
computational fluid dynamics,Int. J. High Speed Comput.5, 1 (1993).

17. F. F. Hatay, D. C. Jespersen, G. P. Guruswamyet al., A multi-level parallelization concept for high-fidelity
multi-block solvers, inProceedings of the SC97: High Performance Networking and Computing, San Jose,
CA, 1997, pp. 448–456. [http://www.hal.com/users/hatay]

18. C.-T. Ho and L. Johnsson, Optimizing tridiagonal solvers for alternating direction methods on boolean cube
multiprocessors,SIAM J. Sci. Comput.11, 563 (1990).

19. I. Babuska, Numerical stability in problems of linear algebra,SIAM J. Numer. Anal.9, 53 (1972).

20. A. Povitsky,Parallel Directionally Split Solver Based on Reformulation of Pipelined Thomas Algorithm
(ICASE Report No. 98-45, 1998).

21. P. J. Morris, L. N. Long, A. Bangalore, and Q. Wang, Three-dimensional computational aeroacoustics method
using nonlinear disturbance equations,J. Comput. Phys.133, 56 (1997).

	1. INTRODUCTION
	2. COMPACT NUMERICAL SCHEME
	3. PARALLELIZATION METHOD
	FIG. 1.
	FIG. 2.
	FIG. 3.
	TABLE I
	TABLE II
	FIG. 4.

	4. PARALLEL COMPUTATIONS
	FIG. 5.
	FIG. 6.
	FIG. 7.
	FIG. 8.

	5. CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

