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In this study we propose a novel method to parallelize high-order compact numer-
ical algorithms for the solution of three-dimensional PDEs in a space—time domain.
For such a numerical integration most of the computer time is spent in computa-
tion of spatial derivatives at each stage of the Runge—Kutta temporal update. The
most efficient direct method to compute spatial derivatives on a serial computer is
a version of Gaussian elimination for narrow linear banded systems known as the
Thomas algorithm. In a straightforward pipelined implementation of the Thomas
algorithm processors are idle due to the forward and backward recurrences of the
Thomas algorithm. To utilize processors during this time, we propose to use them
for either nonlocal data-independent computations, solving lines in the next spa-
tial direction, or local data-dependent computations by the Runge—Kutta method.
To achieve this goal, control of processor communication and computations by a
static schedule is adopted. Thus, our parallel code is driven by a communication and
computation schedule instead of the usual “creative programming” approach. The
obtained parallelization speed-up of the novel algorithm is about twice as much as
that for the basic pipelined algorithm and close to that for the explicit DRP algo-
rithm. Use of the algorithm is demonstrated and comparisons with other schemes are
given. @ 2000 Academic Press

Key Wordsparallel computing; processor scheduling; high-order numerical method;
compact scheme; pipelined Gauss elimination; banded linear systems.

1. INTRODUCTION

High-order accurate numerical schemes are needed to capture multiscale phenor
and the long-time integration characteristics required for problems of computational ws
propagation and the direct numerical simulation of turbulence.
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Implicit finite difference formulas are defined as expressions where derivatives
different mesh points appear simultaneously [1, 2]. The price that must be paid for hi
order accuracy with low dissipation and dispersion is that compact finite difference schel
require the solution of a linear narrow-banded system of equations for the unknown der
tive values. For instance, one can achieve 8th and 10th orders of accuracy solving
diagonal and pentadiagonal systems [2], respectively. The use of implicit filters |
enables implementation of compact schemes for nonlinear models with nonunifc
grids.

While compact schemes of the sixth order are widely used ([4, 5], for example), expli
DRP schemes [6] are used only up to the formal fourth order, to the best of the auth
knowledge. Typically, the wide stencils of DRP schemes lead to more severe problem
stability than compact schemes.

The number of arithmetic operations per grid node and accuracy properties are practic
equal for DRP and compact formulations of the fourth order [7]; therefore, we compare
parallelization efficiency of compact schemes with that of DRP schemes using fourth-or
schemes as an example. Then, we show that the parallelization efficiency of our algorit
being applied to a higher (sixth) order compact scheme, is practically equal to that of
fourth-order compact scheme.

Whereas efficient parallelization of explicit central-difference schemes has been imj
mented by several authors [8, 9] the efficientimplementation of compact schemes on par
computers remains an open problem.

In a multidimensional case the partial derivatives can be found by the solution of
banded linear systems formed by considering each spatial partial derivative separately.
most computationally efficient method for the solution of a linear banded system o
single processor is a version of Gaussian Elimination known as the Thomas algorithm.
a systems witiN unknowns this method requir€3(N) operations.

Parallel solvers that adopt the Thomas algorithm for sets of independent banded sys
are ofthe pipelined type. Pipelines occur due to the recurrence of data within aloop. Then
disadvantage is that during the pipelined process processors will be idle at the begin
of the computations and when the algorithm switches from the forward to the backw
computational step. Note that the idle stage exists even if communications are very |
because processors must wait for completion of computations on the previous processa
natural way to avoid far-field data-dependency is to introduce artificial boundary conditic
(ABC) at interdomain interfaces. Nordstrom and Carpenter [10] have shown that multi
interface ABC lead to a decrease of the stability range and accuracy for high-order com|
schemes. Additionally, the theoretical stability analysis is restricted to linear PDEs ¢
unidirectional partitioning.

As an alternative to pipelining, several concurrent direct linear banded solvers hi
been developed (see [11], [12], and bibliography in these references). These algorithm
based on matrix-vector multiplications instead of the forward and backward recursive st
of the Thomas algorithm. For matrices with narrow bands these factorizations have a hi
degree of parallelism than the basic pipelined Thomas algorithm. These techniques le:
a substantial increase in the number of floating-point operations (a factor of 2—2.5), wt
effectively reduces the gains obtained by parallelism [11].

Hofhaus and van de Velde [12] compared the pipelined Thomas algorithm with ot
direct methods (recursive doubling, cyclic reduction, divide and conquer, and patrtiti
method) and observed that it has the lowest floating-point operation count and requires
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least amount of communication. However, it is less concurrent than some other meth
due to the startup time required for all processors to participate in the computation (i.e.,
pipelined nature of this algorithm).

Sun [13] developed a Parallel Diagonal Dominant (PDD) algorithm which is specifical
designed for the solution of Toeplitz tridiagonal systems arising from compact schen
Taking into account the constant and diagonally dominant nature of the coefficients
Toeplitz matrices, Sun dropped intermediate coefficients and investigated the accurac
this approximation, which is a necessary part of PDD. However, the PDD algorithm is
approximation of the original high-order compact schemes and it has a higher computatic
overhead compared to the Thomas algorithm.

Eidson and Erlebacher [14] developed a chained (pipelined) algorithm for the case
periodic boundary conditions. For nonperiodic boundary conditions, they proposed a
ordering of the elements within the array in order to avoid idle time. However, in this ca
the computational field would be partitioned in a honcontiguous way and, therefore,
communication costs are large.

The goal in this paper is to develop a parallel compact algorithm which keeps the se
computational cost and produces exactly the same solution as its single-processor an
The algorithm should also be suitable for any local boundary conditions.

We recall that in the basic pipelined Thomas algorithm processors stay idle at so
stages of the solution of the linear banded systems in any spatial direction. Compact sche
require the solution of data-independent linear systems in three spatial directions. Theref
processors can be used for computations of derivatives in the next spatial direction w
they cannot proceed with computations corresponding to solutions of linear system:
the current direction. On the other hand, Runge—Kutta computations are local but d
dependent; i.e., all spatial derivatives in a grid node must be computed before the tempg
update.

The key feature of the proposed algorithm is that processors are used for the next c
putational tasks, whereas in the basic pipelined Thomas algorithm they stay idle wait
for data from neighboring processors at the forward and the backward steps of the Tho
algorithm. As a result, in the proposed algorithm processors run in a time-staggered \
performing their computational tasks contiguously. In turn, the optimal number of lint
to be solved per message becomes larger than that for the basic pipelined Thomas
rithm. Reduction of the number of messages is especially important for processor netw
where the communication latency time is larger than that for MIMD parallel computel
Reduction of idle time and communication latency time leads to a considerable increas
speed-up.

To make this algorithm feasible, a static schedule is used to control processor activit
To assign this schedule before the execution of numerical computations, Povitsky |
recently developed a recursive scheduling algorithm for a one-dimensional pipeline
processors. Here we adopt this algorithm to obtain an idle-less 3-D high-order para
method.

The paper contains four sections. In Section 2, we describe compact numerical sche
and the Thomas algorithm in a serial case. In Section 3, we describe our paralleliza
method for compact solvers. In Section 4, we describe a test case and compare the
allelization efficiency for our algorithm, the basic pipelined Thomas Algorithm, and &
explicit scheme.
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2. COMPACT NUMERICAL SCHEME

Consider a multidimensional first-order partial differential equation (PDE)
du au
D _— 1
dt zk: S X’ (1)

wheret is the time, in the 3-D cade=1, 2, 3 denote spatial coordinatgsy, andz. The
mixed derivatives are not taken into consideration, to allow a directionally split comps
numerical scheme to be used for the solution of above equation.

The first derivative terms, such atl /dx;, are approximated using compact finite dif-
ference schemes [2]

’ ! / ! / a b
BU o +aUi_ +U/ +aU/  +BU/, = m(ui-s-l—ui—l)-i‘m(ui-kz—ui—z)’ (2

whereAx is the grid spacing and primes denote derivatives with respegt xpansion

to systems with second spatial derivatives (Navier—Stokes type) is straightforward as
compact formulation for second derivatives and the method for their computation is sim
to those for the first derivatives. For nonperiodic boundaries, one-sided near-bounc
discretizations have the form

I !/ 1
U1+(¥bU2:B Z ap Ui, (3)

where Ny, is the size of the near-boundary stencil apdare discrete coefficients. With
this choice the boundary schemes can be used with a tridiagonal interior scheme witl
increasing the bandwidth [2]. In this study the classicaPadiemed = 0.25, a=1.5, and
B =Db=0)istaken as an example with a tridiagonal matrix for the right and left sides of (:
The proposed method of parallelization can be easily expanded to any compact sct
described by (2).

Equation (1) is discretized in time with an explicit Runge—Kutta (RK) scheme. Tt
solution is advanced from time lewelto time leveln + 1 in several substages [5]

M 8UM MpygM-1
Hi :ZS( X +a Hi )
k

B
(4)
whereM =1, ..., Q are the number of substages; 1, .. ., L denotes the unknown vari-

ables; and the coefficiens8! andb™ depend upon the order of the RK scheme.

To compute derivative8UM /dx,, we must solve a set of independent linear bande
systems of equations where each system corresponds to one line of the numerical grid
example, a system corresponding to a line inxitirection has a scalar tridiagonal matrix
Ny x Ny

a1 Xk—1,) + b Xk + G Xers = firs (%)

wherek=1,..., Ny, I =1,..., Ny x Ny, &, by, ¢, are the coefficientsy, are the
unknown variables, antlly, Ny, and N, are the number of grid nodes in they, andz
directions, respectively.
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The first step of the Thomas algorithmli&) factorization

Ck—1,1

di) = by, de) = b —a a k=2 ..., Ny, (6)
k1,1
and forward substitution (FS)
fa _ TGl + fi

k=2 ..., Ny. @)

Ou1 = k|

diy’ i1

The second step of the Thomas algorithm is backward substitution (BS)

Ci,I
XNyl = ONg.l s Xil = Okl — Xi+1l d’ k=Ny—1,....,1 (8)

The coefficientsy, by, andck are constant for compact schemes; therefore, LU factorize
tion is performed only once and the first step computations include only forward substitut
(7).

The serial algorithm for the compact numerical solution of the system (1) is perform
as follows:

1. Compute the right-hand side of Eq. (2) using values of the governing vatieiden
the previous time step.

2. Compute the spatial derivatives solving tridiagonal systems in all spatial direction

3. Compute the right-hand side of Eq. (1) using the spatial derivatives computed
Step 2 and update governing variables by the Runge—Kutta scheme.

4. Repeat computational steps 1-3 for@ktages of the Runge—Kutta scheme.

5. Repeat computational steps 1-4 for all time steps.

3. PARALLELIZATION METHOD

3.1. Partitioning Scheme

The computational domain is split into subdomains and each subdomain is loadec
a processor. Steps 1 and 2 require exchange of interfacial data between neighboring
cessors. For a subdomain with a given volume (number of grid nodes per processor) a
parallelepiped shape (interface planes parallel to coordinate planes), a cube has the |
mum surface-to-volume ratio that secures the most efficient parallelization [16, 17].

Overlap regions on each side of the subdomain store information that must be transfe
from neighboring domains; i.e., the forward-step coefficients, the backward-step soluti
and the values of the main variables to compute the right-hand sides of the compact
mulations (2). For the classical Radtheme, one layer of nodes from each side should k
transferred to neighboring processorsgl: 0 and/orb £ 0, two layers of nodes are re-
quired to store the transfered data. Note, that overlap regions are used only for data stc
and not for redundant computations; i.e., the computations are exactly the same as ir
single processor case.

To parallelize a serial code using 3-D partitioning is a difficult task. However, an objec
oriented approach adapted in C++ makes it possible to use the same class for pipel
computations in all spatial directions. Three-dimensional partitioning with cubic subd
mains is adopted in the present study.
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3.2. Parallelization of Direct Linear Solvers

Consider the parallelization of Step 2. Suppose, allinghe x direction is split among
the processors (see Fig. 1). Computing its part ofithdine, the pth processor: receives
coefficientgnp-1)/p,1 from the (p — 1L)th processor and puts it in an overlap nd0el };
computes the forward step coefficiegtg, wherek=N(p—-1)/P+1, ..., Np/P; sends
coefficientsgnp/p, to the(p + 1)th processor; and repeats computations (7) for the ne:
lines until all the forward step computations are completed. After completion of all forwa
step computations specific to a single processor,ptieprocessor (except the last) has
to wait for the completion of the forward step computations by all processors ahead o
The last outermostRth) processor starts the backward step computations (8) first. Ott
processors proceed with the backward step computations in a manner similar to the fon
step computations. An overlap layer of nodés- 1 is used for backward computations.

In the literature [14, 16, 18] the parallelization penalty for the solution of sets of line
banded systems has been reduced by sending the necessary information to neighb
processors for groups of computed lines at the forward and backward steps of the Tho
algorithm. The optimal number of lines to be solved per message (the size of packet)
been derived as a function of computation time per grid point and communication time (
Eqg. (11)).

Figure 2 presents the communication and computations within a pipeline in a sin
spatial direction. The pipeline includes five processors. Lines are gathered in nine pac
in the forward direction and in six packets in the backward direction. Zeros denote the i
time that occurs at the beginning of computations and when the algorithm switches fr
the forward to the backward computational step.

We define the basic pipelined Thomas algorithm (PTA) to be the method described ak
for the solution of sets of linear banded systems on multiple processors. If the computatic
domain is partitioned in all spatial directions, computations in the next spatial direction
pipelined as well. Therefore, a processor belongs to three pipelines. Global synchronize
of processors occurs at each spatial step and processors stay idle waiting for data
immediate neighbors.

In the proposed algorithm we avoid this idle stage by performing computations in t
next spatial direction when there is no available data to perform the Thomas algorit
computations in a current spatial direction. In other words, we fill idle time units of tr
basic pipelined algorithm with useful computations.

The Runge—Kutta computations (Step 3) are local but data-dependent because |
computations use spatial derivatives in all directions as input data. Consequently, all sp

r=- bl |
1 I

FS FS
] ]
] I
: Line :
] 1
] ]

BS | \ BS

I !
I 1
I_ - - _I
0 1 N N+l

FIG. 1. Data traffic in a single direction.
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FIG.2. Schedule of processors for the PTA in a single direction. Here each column corresponds to a proce:
“0”,“1", and “ —1" denote idle stage, forward, and backward computations; arrew >, < - - -denote the send

and receive communications

derivatives must be computed before RK computations can be performed for correspc
ing grid nodes. Thus, we cannot perform Runge—Kutta computations (Step 3) while p
cessors are idle between the forward and the backward steps of the Thomas algor
(see above). By this time spatial derivatives in the last rendered direction are not

computed.
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FIG.3. Schedule of processors for the IB-PTA. The legend is the same as in the previousfiguselenotes
the send-receive communications.

The Immediate Backward Pipelined Thomas Algorithm (IB-PTA) has been develop
by Povitsky [15] and is implemented here for the computations of the spatial derivative
the last direction. The processor schedule is shown in Fig. 3. The idea behind this algori
is that the backward step computations for each group of lines start immediately a
the completion of the forward step computations for these lines. Each processor switc
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between the forward and backward steps of the Thomas algorithm for various group:
lines. As for the basic PTA, a processor communicates with its neighbors to get the neces
data for the beginning of either the forward or backward computations for the next gro
of lines.

The IB-PTA itself is not an idle-less algorithm. It has been shown [15] that the idle tirr
is the same for the IB-PTA and the basic PTA when these algorithms are used in a sit
direction (compare Figs. 2 and 3). The advantage of the IB-PTA over the basic PTA is t
processors become idle after completion of the subset of lines; i.e., zeros appear Kfser
in Fig. 3. In the proposed algorithm, the IB-PTA is used in such a way that the idle time un
are filled with the local Runge—Kutta computations. Obviously, one can use the IB-PTA
the first two directions as well.

The two types of interplay between processor activities considered here require the us
a processor schedule to control processor computations and communication. The rema
of this section describes computation of the optimal number of lines solved per mess
(Subsection 3.3), generation of the processor schedule (Subsection 3.4), and the com
tional schedule-driven algorithm (Subsection 3.5). In Subsection 3.6, we will discuss wi
to create the schedule for more general domains and systems of equations with mixed sy
derivatives.

3.3. Optimal Size of Packet of Lines

In the previous subsection, the way to use potential idle stage of processors was she
Actually, the use of idle time in the proposed algorithm leads to such a trade-off (descrit
in this subsection) between the communication latency and the data dependency delay
considerably increases the optimum number of lines solved per message and, therefore
proposed algorithm has smaller latency time and fewer messages than the basic algor

The additional (penalty) time in a multiprocessor system originates from (1) communic
tion time due to the transfer of the forward step coefficients and the backward step solu
of the Thomas Algorithm, and (2) the processor idle time due to the pipelined nature of
Thomas algorithm.

The former reason for penalty time exists in the proposed algorithm and in the ba
algorithm and is computed as a sum of communication latency time and communicat
transfer time

i=3
Fi=> [N?/Ky;1(bo + Lb1Ky;) + [N?/Kz;1(bo + LpbiKz)). 9)
i=1

wherei = 1, 2, 3 are spatial coordinatek; ; andK,; are the size of packets for the for-
ward and backward steps in tith spatial direction, respectivelyN?/Ky ;1 and[N?/Ky;]
are the number of messages, andLy, is the number of words per numerical grid point
transfered on the forward and backward step (see Table Il). Here the linear model of ¢
munication time between processors is adapted, i.e. Ailmet b; K, whereK is the length
of the string in words.

The latter component of penalty time for the basic algorithm is given by

i=3
Fo= (Ngi — DN(Ky;g1 + K2i02). (10)
i=1
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whereNgy; is the number of processors per pipeline in ittredirection,g; andg, are the
computational times per grid node for the forward and backward steps. This componer
penalty may be avoided for the proposed algorithm (see the previous subsection).

In this subsection we consider the 3-D domain witNg x Nyt X Niot numerical grid
and an equal number of subdomain partitions in each spatial direction.

For the basic PTA, the latency and the processor idle time tradeoff for sets of lint
banded systems leads to the expression [16, 18]

N N
Kl = 7‘}/5 K2 = v ) (11)
p(Ng — 1) Ng —1

wherey =byp/g; is the ratio of the communication latency and the backward step comp
tational time per grid node angd= g; /9, is the ratio of the forward and the backward step
computational times.

For the IB-PTA, which is used in the last spatial direction, the time to perform forwal
step computations per portion of lines is equal to that for backward step computations:

N K101 = NKage. (12)

The first outermost processor in tRelirection computes the forward step of the Thoma:
algorithm in they direction while this processor is waiting for the backward step solutio
from the second processor. The time balance of this processor is given as

KiN(Ng — 1)g1 + KoN(Ng — 1)@ = N? x Ng. (13)

The left-hand side of the above equation represents the time between the beginning o
backward-step computations and the completion of the forward-step computations of
Thomas algorithm in the direction. The right-hand side is the time for the forward stej
computations in the next) spatial direction.

Combining Egs. (13) and (12) we obtain

N2

Ki=—
LT O(Ng = 1)

K2 = ,OK]_. (14)
The same time balance equation is obtained for the share of processor time between
putations in they direction and in the direction.

In most cases, thK values computed above are bigger than those computed by Eq. (°
and, therefore, communication latency time is smaller for the proposed algorithm than
the basic one. Otherwise, tie values for proposed algorithm are chosen as maximum ¢
those defined by Egs. (14) and (11). In this case, communication latency times are e
for the basic and the proposed algorithm. Here the idle time for the proposed algorithr
no longer equal to zero and is given by

i=3
Fo=> ((Nai — DN(Kyig1 + K2 G2) — N3gn). (15)
i=1
Actually, this is the time before completion of all forward-step computations on the fir
processor and beginning of the backward-step computations for the first packet of lines.
this idle time is smaller than that for the basic algorithm (Eq. (10)) because of substract
of the second term in the above equation.
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The potential idle stage of the processors performing the IB-PTA irz tthieection is
used for local Runge—Kutta computations. To have completed lines for RK computatio
the first portion of lines must be completed with backward-step computations no later tt
the first outermost processor completes the forward-step computations. This leads to a
balance constraint similar to that described by Eq. (13).

To sum up, the parallelization penalty time includes the processor idle time, commu
cation latency time, and communication transfer time. The communication transfer til
is equal for the basic algorithm and for the proposed algorithm as the same amoun
informationN?(L ¢ + L) is transfered. This time plays a minor roletasg b, for modern
multiprocessor systems (see Fig. 8c). Substituting the optiénfdr the basic algorithm
(Eq. (11)) to the formulas for idle time (9) and for communication time (10), these comp
nents of parallelization penalty appear to be equal.

If Eq. (14)isvalid, the proposed algorithm avoids the idle time and decreases the comi
nication latency time, therefore, it suppresses parallelization penalty more than two tinr
Otherwise, the communication latency times are equal for both algorithms and idle ti
is still better for proposed algorithm (see Eq. 15). This happens foNpignd smallN;
however, our computational experiments show that the former situation occurs in most c:
and parallelization penalty reduces two times or more (see Section 4).

3.4. Scheduling Algorithm

A unit that the proposed schedule addresses is defined as the time for the treatment
packet of lines by either forward- or backward-step computations in any spatial directi
(see the previous subsection).

Ateachtime unit each processor either performs forward- or backward-step computati
or local Runge—Kutta computations for one packet of lines. To set up this schedule, le
define the “partial schedules” corresponding to sweeps in a spatial direction as

+1 forward step computations
J(p,i,dir) =<0 processor is idle (16)
-1 backward step computatians

wheredir =1, 2, 3 denotes a spatial directiop,is the number of processors in a processol
row in thedir direction, and is the number of the unit.

A recursive algorithm to compute the schedule in a single spatial direction was propo
by Povitsky [15]

J(p, Imin, dir) = 1 if J(p+1,1,dir)=1
J(p,l +2,dir) = -1 if J(p+1,1,dir)=-1 a7
J(p,1,dir) =0 otherwise

wherelpin=min(1 < j <l | J(p, j, dir) =0). The corresponding valid schedule must be
assigned to the last outermost processor prior to the above recursive computations (see
for more details). Thus, different pipelined algorithms (for example, the I1B-PTA and tt
basic PTA) are fully defined by their schedule on the last outermost processor.

Inthe framework of Cartesian partitioning, a proces$od, K) receives the forward-step
coefficients from its left neighbors @1, J, K), (I, -1, K), and (I, J, K-1)
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and sends the forward-step coefficients to its right neighborsl(1J, K), (I, J+ 1, K),
and (I, J, K+ 1). Performing the backward-step computations, the processor sends res
of computations to the left neighbors and receives data from the right neighbors.

For the basic PTA, a processor computes “direction-by-direction,” and its activities
controlled by the communications, i.e., a processor waits for available data. For the IB-F
a processor receives data from a neighbor only when it is necessary to complete the ¢
putations. Therefore, the communication schedule is assigned by means of a computa
schedule as follows. At the beginning of each time unit a processor communicates \
some of its right neighbors according to the value of the scheduling vafable

processorp and p + 1 do not communicate
send to processqr + 1,

receive from processqr+ 1,

simultaneous send and receive

C(p, i, right[dir]) = (18)

w N, O

The end of théth time unit on thepth processor corresponds to the beginning oi the
time unit on the(p 4+ 1)th processor in the same spatial direction. Therefore, the comm
nication schedules in any spatial direction are computed as described in [15]:

1 ifJ(p+1i—1dir)#-1&JI(p+1i, din=1

2 if J 1i—1din=-1&J 1,i,di 1,

C(p.i + L. right{dir]) = T+ L= dn (p+1L1.din#
3 if J(p+1,i —1,dir)=-1& J(p+1,i,dir)=1,
0 otherwise

(19)

The definition of C(p, i, left{dir]) and its computation are similar to that f@(p,i,
right[dir]).
The final computational schedule is defined by

dir FS computations in the directiatir,
T(p,i) = ¢ —dir BS computations in the directiatir, (20)
4 local RK computations.

Partial directional schedules must be combined to form a final schedule. For example
processors should be scheduled to execute the forward-step computationg dirdation
while their partial schedules include an idle stage between the forward- and the backw
step computations in thedirection.

The final schedule is set by merging schedules in all three spatial directions, as follo

1. Skip the idle time units
while(J(p,i,din)=0) {l,=lp+1;i =i +1}
2. Assign the partial schedule to the earliest available time unit
T(p, Imin) = I(p, i, dir) x dir; I =Imin
wherelmin=min(lp < j | T(p, j)=0).
3. Assign communication schedu® p, i, left{dir]) andC(p, i, right[dir]) to the time
unit I in.
4. Repeat steps 1-3 until all elapsed time units in the current direction are complete
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The first step ensures that the time interval between any computational activities d
not become smaller than that for a partial schedule. Otherwise, one might schedule
backward-step computations immediately after completion of the forward-step compt
tions (see Fig. 1) and get an incorrect schedule.

The obtained schedule meets the following requirements of consistency: (i) each pro
sor performs one task per time unit; (ii) the forward step computations gptthgrocessor
begin no earlier than the conclusion of these computations for a current group of line:
the same direction on thg — 1)th processor (the left neighbor); (iii) the backward-step
computations on theth processor begin no earlier than conclusion of these computatio
on the(p+ 1)th processor (the right neighbor); and (iv) the backward-step computatio
begin after completion of the forward-step computations in the same direction for the curr
group of lines.

An example of a communication and computations schedule for the first outermost
cessor (1, 1, 1) is shown in Table |. Obviously, this processor communicates only with
right neighbors, (2, 1, 1), (1, 2, 1), and (1, 1, 2). Here the IB-PTA is used in all three spa
directions.

TABLE |
Schedule of Communication and Computations for the First Outermost Processor (1, 1, 1),
Where i is the Number of Time Unit, T Denotes Type of Computations, (2, 1, 1), (1, 2, 1), and
(1, 1, 2) Denote Communication with Corresponding Neighbors

i T 2,1,1) 1,2,1) 1,1,2) i T (2,1,1) 1,2,1) 1,1,2)
1 1 0 0 0 28 =2 0 2 0
2 1 1 0 0 29 3 0 0 1
3 1 1 0 0 30 -2 0 2 0
4 1 1 0 0 31 3 0 0 1
5 1 1 0 0 32 -2 0 2 0
6 1 1 0 0 33 3 0 0 1
7 1 0 0 0 34 -2 0 2 0
8 -1 3 0 0 35 3 0 0 0
9 2 0 0 0 36 -3 0 0 3
10 -1 3 0 0 37 4 0 0 0
11 2 0 1 0 38 -3 0 0 3
12 -1 2 0 0 39 4 0 0 0
13 2 0 1 0 40 -3 0 0 2
14 -1 2 0 0 41 4 0 0 0
15 2 0 1 0 42 -3 0 0 2
16 -1 2 0 0 43 4 0 0 0
17 2 0 1 0 44 -3 0 0 2
18 -1 2 0 0 45 4 0 0 0
19 2 0 1 0 46 -3 0 0 2
20 -1 2 0 0 a7 4 0 0 0
21 2 0 0 0 48 -3 0 0 2
22 -2 0 3 0 49 4 0 0 0
23 3 0 0 0 50 4 0 0 0
24 -2 0 3 0 51 4 0 0 0
25 3 0 0 1 52 4 0 0 0
26 -2 0 2 0 53 4 0 0 0
27 3 0 0 1
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TABLE Il
Algorithm B: Forward-Step Computations for Interfacial Nodes

Order Current processor Next processor Lt Ly
—aNON-1] ~ 7ag UN-1I Unal
ath gy = dNZAX (Go1=) Ong = OV + 5% u;
b
un _ —8N-19N-21+ 7ag UNI“UN-21)- 705 UN-3] _ _ un b Un+il
6th o\, = N1 (Q-1=) -1 = O\ 1) T+ 2ax oy, 4 3
—an o | -2 UNC1- 725 Un—2 - U U
un N—1| 2AX 4AX _ _ TANON-1) b YIN+2 _a IN+1
o = N (o1 =) Ony = N + aax dn + oax dy

Computations of the right-hand sides of Eq. (2) requires the exchange of interfacial val
of the governing variables. A straightforward way to parallelize the algorithm (Algoritht
A) includes exchange of the near-boundary values before each time step. Each proce
exchanges data with its neighbors-{l, J, K), (I, J-1, K), (I, J, K-1) in all three spa-
tial directions, then waits for the completion of computational tasks by its other neighb
(I+1, J,K), (I, H1, K), (I, 3, K+ 1) and finally exchanges data with these three proce:
sors. The “asynchronous send—synchronous receive” mode of communication is suit
for exchange of interfacial data. The interfacial values are stored in overlap node lay
“0” and “N + 1.” This communication leads to local synchronization between processo
Additionally, exchange of boundary values with three processors simultaneously may |
to deterioration of parallelization efficiency. To avoid this synchronization, we propose
transfer these values together with forward-step coefficients in the corresponding direct
by means of the following Algorithm B:

1. Compute the uncompleted forward-step coefficigiits(gy} andgy ;| for the 6th
order scheme) for interfacial nodes (see Table II).

2. Transfer valuegy, andUy (gi"}. gy 1. Un andUy_1 for the 6th order scheme) to
the next processor and put them in the overlap layer 0 (layers 0 and - for the 6th o
scheme).

3. Complete computation @ (On-1, andgn, for the 6th order scheme) on the next
processor.

4. UsingUn_1, (Un_1, andUy_», for the 6th order scheme), compute right-hand sid
of Eq. (2) for the first node (first two nodes for the 6th order scheme) on the nextp
CEessor.

5. Performing the backward-step computations, transfer valueégn, andgy-_1, for
the 6th order scheme) and solutivn back to the current processor.

Algorithm B avoids local synchronization between the neighboring processors and
duces the traffic of messages between the processors. This leads to approximately a
reduction of the parallelization penalty in comparison with Algorithm A.

3.5. Computational Algorithm

The generation of the processor schedule includes (i) computation of the size of pa
by Eq. (14), (ii) computation of the processor schedule for the last processor in a curi
direction [15], (iii) recurrent computation of the schedule for all processors in the pipeli
by Eqg. (17), (iv) computation of the scheduling variables by Eqgs. (18)—(20), and (v) bindi
of schedules in spatial directions as described in the previous subsection.
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fori=1,... 1
{
for dir=1,3

if (Com(p, i, right{dir]) = 1) send FS coefficients to right processor;

if (Com(p,i,right[dir]) = 3) send FS coefficients to right processor

and receive BS solution right processor;

if (Com(p, i, left[dir]) = 1) send BS solution to left processor;

if (Com(p, i, left[dir]) = 3) send BS solution to left processor

and receive FS coefficients from left processor;

if (Com(p, i, right[dir]) = 2) receive BS solution for line lb from right processor;
if (Com(p, i, left[dir]) = 2) receive FS coefficients from left processor;

for dir=1,3

if (T(p,i) = dir) do FS computations
if (T(p, i) = —dir) do BS computations

if (T(p,i) = 4) do RK computations
}

FIG. 4. Schedule-governed banded linear solver, whigflet = p + 1 andleft= p — 1 denote left and right
neighborsdir=1, 2, 3 corresponds t®, y, andz spatial directionsT governs computations&Zom controls
communication with neighboring processopsis the processor number, ands the number of group of lines
(number of time unit).

After assignment of the processor schedule on all processors, the computational pa
the method runs on all processors by an algorithm presented in Fig. 4. The static proce
schedule governs the consequence of computations and communications on each proc
At the beginning of each unit a processor communicates with its neighbors by the sche
(variableCom) and then performs scheduled computations (vari@bl&he proposed code
style fully separates computational routines from communication procedures that allc
for easy reuse of the code.

3.6. Some Extensions

Let us consider a global domaMot x X Nioty X Niot 2, WhereNor x 7 Nioty 7 Niotz. IN
this case the number of partitions is different for different directions, Ngx 7# Ng,y #
Nq.z, and the analog of Eq. (14) in thedirection is given by

N2

Kiy=———.
YT 2(Ngx — 1)

(21)

AssumingNg x > Ng y > Ng 2, we roundK y andK  to smaller integers in such away that
mKyx = Kyy andnK, y =Ky, So doing, Eqg. (13) holds for any direction and processor
run idle-less. The processor schedule addresses a packet &f;sizs a unit. Computing
the Thomas algorithm in thedirection, processors use potential idle time for computation
in the y direction as in the previous case. Here a processor tnepesckets of lines in the

y direction before communication with the neighboring processor. Doing computations
thez direction, a processor treaten packets per communication. Results of parallelizatior
efficiency for the case are presented in Section 4.
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To reduce further the number of processors in a pipeline, we propose to combine
scheduling algorithm with a two-way decomposition, denoted as the TW algorithm in tl
study. Direct solvers for banded linear systems based on two-sided Gauss Elimina
were introduced by Babuska [19] and are referred to as twisted factorization, two-v
decomposition (TW), and “burn from two sides” by various authors. The computatior
count per grid node for the TW algorithm is the same as for the serial Thomas algoritt
An additional 2x 2 system of linear equations should be solved per line. The number
processors in the pipeline is half the number compared to the basic Thomas algorit
therefore, the parallelization penalty is reduced. For long chains of processors, we proj
to combine our scheduling algorithm with the two-way pipelined algorithm. The price fi
this improvement is programming of the Thomas algorithm in an inverse direction.

In this case, the schedule is generated for the rows of theFif8tand the last/2
processors. Then we include exchange of the forward-step coefficients betwéRyi2jta
and(P/2+ 1)th processors and the solution of &2 system. These tasks are performec
immediately after completion of the forward-step computations for each group of lines
middle processors.

For every stretched domains the size of a cubic subdomain becomes bigger thar
domain size in some directions. In this case, 1-D partitioning by stretched (noncut
subdomain is proposed. Since the linear systems need to be solved in each directiol
matter how the grid is partitioned over the processors, there will be at least one direc
in which the recurrence spans across several processors. This direction is taken las
proposed scheduling algorithm is used to combine the IB-PTA in this direction with t
RK computations. The Thomas algorithm computations in the other directions are tri
to solve, since processors contain the full systems.

For practically important multizone situations, the governing partial differential equatio
are discretized on sets of numerical grids connecting at interfacial boundaries by ABC
this case, the number of processors in each zone is arbitrary and can be determin
be proportional to the size of zone. Here we cannot always partition a zone with cu
subdomains. For example, a cubic zone is perfectly (i.e., in a load-balanced way) covi
by cubic subdomains only in a case that the number of processors allocated to this :
is cube of an integer number. Otherwise, a domain partitioning degrades to two- or c
dimensional partitioning with poor surface-to-volume ratio. Our approach allows for tl
combination of schedules corresponding to different pipelines and, therefore, a proce
can handle subsets of different grids (or nonaligned pieces of the same grid) to ensure
balance and idle-less performance.

For problems with mixed and one-directional second derivatives, Eq. (1) appears as

du ouU 32U
ot =S U S 22

If S¢j =0 whenk# j, the parallelization strategy is the same as for Eq. (1) as seco
derivatives are computed solving sets of linear banded systems (2) simultaneously
those systems for first derivatives.

If all S ; are assumed different from zero, the proposed parallelization algorithm
used in all three spatial directions to compute first derivatives. Then, the same algori
is applied to compute derivatives of derivativ@su )/ (9%¢dx;), where the computed first
derivatives are used in the right-hand sides of systems (2). The IB-PTA indhection
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must be used to obtaifdU)/(3z) before computing th€s?U)/(dxdz) while processors
are idle. Additionally, lines in the direction must be treated in such a way that grid point:
with computed first derivative by form continuous lines in thg direction. This problem
was solved by Povitsky [20] for parallel alternative direction implicit (ADI) algorithms.

4. PARALLEL COMPUTATIONS

4.1. Benchmark Problem

As an example of a three-dimensional model problem we consider the development o
acoustic pulse in an unbounded domain. This problem was also considered as a bench
case by Morriset al. [21]. The problem satisfies the linearized Euler equations with n
basic flow and constant thermodynamic basic properties. If the linearized Euler equati
are nondimensionalized with respect to the basic density, the speed of sound and the
spacing as a length scale they may be written as,

ou_ _9p
at  ax’
dv __9p
at Ay’
23
ow _ op (23)
a9z’
p_ U _dv_ dw
ot~ ax ay 9z’
The initial conditions are given by
2 2 2
D= exp{_w} , (24)
a
wheree =0.01 anda = In(2)/9.
The analytical solution for an infinite domain is given by
€
Panal = 5-{(r — )y expl-a(r — O] + (r + ) expl-a(r + 17}, (25)

Characteristic boundary conditions are appliedb@t The computational domain is
Q=[-30<x<30]x[-30<y<30]x[-30<z<30].

For comparison, the same problem has been solved using an explicit dispersion-relat
preserving (DRP) spatial discretizations with a seven point stencil [6]. According
Colonius [7] this scheme has approximately the same dispersion behavior and con
tational count as the considered 4th order compact scheme. A constant coefficient 6th c
artificial dissipation is added to the DRP scheme [21]. The volumetric average of the
solute errorzi.j’k | Pcomp— Panall/ €2 is shown in Fig. 5. As would be expected from their
dispersion properties, the error in these two cases is almost equaltwh2h Then, for
t > 25 the accuracy is determined by the implementation of the boundary conditions and
by the interior scheme properties. The error in the explicit scheme is dependent on the
ficial dissipation coefficient. Two values have been considered0.004 andu = 0.002.

As expected, the absolute error is reduced as the valudéiecreased.
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FIG.5. Temporal behavior of absolute error for explicit DRP and compact schemes.

4.2. Speed-Up

The CRAY T3E MIMD computer used in this study is installed in the San Diego Supe
computer Center (SDSC) at the University of California, San Diego.

The scheduling part of the parallel code includes the computation of the optimal num
of lines solved per message (i.e., number of portions of lines) and the assignment
communication and computation schedule (see the previous section). The solver part, w
is controlled by the static schedule, includes the Thomas algorithm computations in
spatial directions (step 1 of the serial algorithm), local Runge—Kutta computations (st
2 and 3), and loops by the stages of the RK computations and by time. Exactly the s:
compact numerical schemes are used for the basic PTA and the proposed algorithm.
speed-up on an MIMD computer witR processors over a single processor solving th
same problem is defined by

S— Tserial , (26)
Tparallel
whereTparalel IS the actual elapsed time per processor on a MIMD computeiTang is
the actual elapsed time on a single processor. The parallelization penalty is defined as

TP _ TparaIIeIP - Tserial

Tserial

P
x 100%= (g - 1) x 100% 27)

Obviously, in the ideal casB= P andTp = 0. For example, 100% parallelization penalty
corresponds to the case where a code runP gmocessors and its speed-8jis equal to
P/2. We recall that the parallelization penalty exceeds 100% for concurrent parallel solv
for banded matrices (see the Introduction).

Parallel speed-ups for explicit and compact computations with the basic PTA algorit
and the proposed algorithm are shown in Fig. 6. Speed-up is shown as a function of
number of nodes per processor per directitin.

The level of parallelization penalty is 25-30% when the subdomain size varies frc
20° to 1C°. The parallelization penalty for explicit schemes is invariant to the number
processors involved in the computations because the only source of parallelization per
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FIG. 6. Speed-up$) and parallelization penaltys for explicit and compact schemes, (1) explicit scheme,
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(2) proposed algorithm, and (3) basic PTA.

is local communication due to exchange of interfacial values of the governing variabl
Speed-ups for the compact scheme combined with our scheduling algorithm are similz
those obtained for explicit computations whereas speed-ups for the basic PTA algori

are substantially lower.

Parallelization efficiency for the 6th order compact scheme appears to be very clos
that for the 4th order compact scheme. The only difference between the two schemes i
amount of transfered information per numerical grid node (see Table I). This communi
tion penalty time is small in comparison with other components of parallelization penal
i.e., communication latency time and processor idle time (see below).

Sample computer runs onxd4 x 4= 64 and 5x 5 x 5= 125 processors with $820°
grid nodes per processor show that the parallel speed-up increases 1.5-2 times ove

N
o

o
[~]

100

basic parallel compact algorithm (see Figs. 7a and 7b).
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FIG.7. Speed-upand parallelization penalfy] for 3-D partitionings of computational domaiN,is the num-
ber of numerical grid points per processor per direction, (@¥4x 4=64, (b) 5x 5x 5=125,(c) 8x 4 x 2=164,
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FIG.8. Theoretical estimation of parallelization efficiency: (a) the optimal number of lines solved per mess:
(forlongest pipeline of three), (b) communication part of parallelization pefialty, (c) Speed-up, and (d) overall
parallelization penalty,. HereK, is the number of lines solved per message for forward-step computaiass,
the number of numerical grid points per processor per direction, pairs of curves (1,4), (2,5), and (3,6) corresj
to 3-D partitioning of cubic domains or?48°, and 16 processors, curves (1,2,3) correspond to the propose
algorithm (Eqg. (21)), and curves (4,5,6) correspond to the basic algorithm (Eqg. (11)).

For 8x 4 x 2 and 16x 2 x 2 partitionings on 64 processors the speed-up somewh
decreases for both algorithms (see Figs. 7c and 7d). Still, the proposed algorithm outperf
the basic algorithm in terms of speed-up. The novel algorithm and the basic algorithm
used with corresponding optimal numbers of lines solved per message (Egs. (14), (21),
(11)).

To analyze the obtained speed-ups, some results of theoretical model of paralleliza
(Subsection 3.3) for% 82, and 16 partitioning are presented in Fig. 8. Theoretical anc
experimental speed-ups fot gartitioning have reasonable correspondence. Experiment
speed-ups are lower than theoretical speed-ups due to the assumption of a linear comr
cation time model.

The size of the packet is substantially larger for the proposed algorithm than that for
basic algorithm for 2and & partitionings (Fig. 8a). For the #¢partitioning, the optimal
size of packet become equal for both algorithms winer: 14. Even in this case, the
obtained speed-up for the basic algorithm outperforms that for the basic one (comy
curves 3 and 6 in Figs. 8c and 8d). However, the difference in speed-ups decreases \
N approaches 10. Note, that the latter case corresponds’te 4896 processors and a
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small number of numerical grid nodes per processo? £0000). For two-sided Gauss
Elimination (see Subsection 3.6) this critical number of processors doubles and the ove
number of processors becomes equal to 32768 that is considerably larger than a nul
of processors in any real multiprocessor system. For a nonequal number of proces
in different directions, substantial parallelization penalty in the direction with the longe
number of processors in a pipeline softens by smaller parallelization penalties in ot
directions (see Fig. 7d).

In Fig. 8b the communication penalty timMgmm= N?(L ¢ 4+ Lp)/ Tserial IS presented.
As explained in Subsection 3.3, the parallelization penalty for 4th and 6th order comp
schemes differs only by means &,nm This term contributes less than 10% penalty for
the 6th order scheme and no more than 5% for the 4th order scheme.

5. CONCLUSION

The pipelined Thomas algorithm has been applied to a multidimensional aeroacous
problem solved by a compact (implicit in space and explicit in time) numerical scherr
To achieve good parallelization efficiency: the computational domain is split into cuk
subdomains; the number of lines solved per message is optimal; the values of the gover
variables are transfered together with the forward-step coefficients; and the schedule-di
computations are performed in such a way that an idle stage for the processors is avoi
Under this schedule, the processors perform computations in the next spatial direc
while otherwise they are idle from recursive computations in the current direction. To ¢
completed data for the Runge—Kutta temporal update, the Immediate Backward Pipeli
Thomas Algorithm is used in the last spatial direction. Processors perform their task:
a contiguous way. The optimal number of lines solved per message is larger than
for the basic Thomas algorithm. The absence of idle time and the reduced latency of
communications lead to a substantial reduction of the parallelization penalty.

Using modern MIMD computers with low communication latency (below 18 the
parallelization penalty of the proposed PTA is below 100% if the number of grid nodes
processor is more than 10This is a significant improvement over alternative algorithms
for implicit schemes. Thus, one can use the Thomas algorithm “as it is” rather than progt
concurrent parallel solvers. On the other hand, the obtained parallelization efficiency
comparable to that for the explicit dispersion-relation-preserving scheme with the sa
order of accuracy.
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